Relevance Feedback using Support Vector Machines

Harris Drucker
AT&T Research and Monmouth University, West Long Branch, NJ 07764, USA
HD@RESEARCH.ATT.COM

Behzad Shahrary
DCG@RESEARCH.ATT.COM

David C. Gibbon
AT&T Research, 200 Laurel Ave. Middletown, NJ, 07748, USA

Abstract

We show that support vectors machines (SVM’s) are much better than conventional algorithms in a relevancy feedback (RF) environment in information retrieval (IR) of text documents. We track performance as a function of feedback iteration and show that while the conventional algorithms do very well in the initial feedback iteration if the topic searched for has high visibility in the data base, they do very poorly if the relevant documents are a small percentage of the data base. SVM’s however do very well when the number of documents returned in the preliminary search is low and the number of relevant documents is small. The competitive algorithms examined are Rocchio, Ide regular, and Ide dec-hi.

1. Introduction

1.1 Statement of the problem

Our problem is that of relevancy feedback (RF) within the context of information retrieval (IR). There is a set of documents that a user wants to retrieve within a database. Some of the articles are relevant, some not. It is important to understand that relevancy is relative to the perception of the user, that is document D_j may be relevant to user U_k but not user U_p.

The user is assumed to present a preliminary (or initial) query to the system, in which case the system returns a set of ranked documents which the user examines. Although many documents may be retrieved by the system, the system only presents one screen of documents at a time. In our case, we assume that ten documents are returned on the initial screen with enough information for the user to gauge whether a document is relevant or not. An optimal preliminary query would only return relevant documents and all the user has to do is scroll through all the screens to find all the relevant documents. In actuality, depending on the quality of the initial query, many documents may be returned but few may be relevant. The initial query may be a Boolean query such as conjunction or disjunctions of key words or the inquiry could be a sophisticated inquiry in the form of a question.

In our case, we ignore the exact nature of the preliminary query and assume that the return of the documents from this initial query is poor (three or less relevant documents from the full screen of ten documents). However, our technique will work no matter how many documents are returned from the initial query. We believe that a hard test of an IR system with RF occurs when the number of relevant documents returned in the initial query is low. We assume that if the documents returned in the initial screen are all relevant, then the user will just scroll to the next screen while if no relevant documents are returned, the user continues to scroll through the screens until at least one relevant document is returned on a screen and then the first feedback iteration begins. Thus if there are between one and nine relevant documents returned on the initial screen, the user marks the relevant documents (unmarked documents are taken as non-relevant) and the system goes through a first feedback iteration and another set of the top ten ranked documents are returned. These feedback iterations continue until the user terminates the procedure.

We first concentrate on the state when between one and nine (inclusive) relevant documents are returned in the initial screen. Our method will be based on the use of support vector machines (Vapnik, 1998; Drucker, 1999; Joachims, 1998) with comparisons to other RF techniques: Rocchio (1971), Ide regular and Ide dec-hi (Salton and Buckley, 1990; Harman, 1992). These algorithms will be examined in detail later but suffice to say now that all except Ide dec-hi use all the relevant and non-relevant documents on the first screen while Ide dec-hi uses all the relevant documents and the top ranked non-relevant document.

Recall that we are paying particular attention to the case where the initial retrieval is poor. As anyone who has done IR or web searches will attest, it is rather discouraging to get a return of a search stating that the search has found thousands of documents when in fact
most of the documents on the first screen (the highest ranked documents) are not relevant to the user. Our
typical user is hypothesized as preferring to mark the
top ten returned documents as relevant or not and going
through a series of feedback iterations rather that
examining many screens to mark all the relevant
documents.

Summarizing: in the initial preliminary search we
obtain either (1) no relevant documents, (2) one to nine
relevant documents or (3) all relevant documents. In
case (1), we will be forced to go to succeeding screens
until we get one screen with at least one relevant
document. All the documents on that last screen and
previous screens will be used in the first feedback
iteration. In case (2) we mark the relevant documents
on the first screen (unmarked on the first screen are
non-relevant) and go through feedback iterations. In
case (3) we go to the next screen. We will not
investigate case (3). In our case we will concentrate on
the situation when the number of relevant documents
returned on the first screen is low (three or less) and
could be zero. Please distinguish between the
preliminary query that returns the first set of documents
and the first feedback iteration which starts with that
initial set of documents marked by the user.

After the first feedback iteration and on all subsequent
iterations we will examine only the first screen no
matter how many of the returned documents are
relevant (even if none). We then track performance as
a function of feedback iteration.

1.2 Techniques Investigated.

One difference between our study and others is the
simultaneous tracking of performance as a function of
feedback iteration and the use of SVM’s. Although
there have been many studies of the use of SVM’s in
text retrieval (Joachims, 1998; Vapnik, 1998, 1992;
Drucker, 1999), most studies emphasize finding the
method that optimizes performance after one feedback
iteration.

SVM’s have been studied in the context of the IR
filtering problem (Dumais, 1998; Joachims, 1998). It is
understood that both RF and filtering problems are both
classification problems in that documents (in our case)
are assigned to one of two classes (relevant or not).
However, in the filtering situation, we usually have a
marked set of documents termed the training set and
use that set to train a classifier. Performance is then
judged on a separate test set. In a sense, filtering could
be considered RF with only one feedback iteration. The
problem with using filtering rather than many iterations
of RF is that (1) one has to mark “many” documents in
the training set to obtain reasonable classification rates
on the test set (2) how many is “many” depends on the
problem and is not known in advance (3) since what are
to be considered relevant documents is user dependent,
this would mean that every user must construct a
different training set. Multiple iterations of feedback
could be considered to be an attempt to maximize
performance on a test set that includes all documents
except the ones already marked. In that sense, RF is
similar to what is termed active learning (Tong, 2000;
Scholhn and Cohen, 2000) in that we try to maximize
test performance using the smallest number of
documents in the training set. However the important
difference between RF and active learning is that active
learning may force the user to mark many more non-
relevant documents than in IR feedback and our
supposition is that the user wants to see the maximum
number of relevant documents at each feedback
iteration. Additionally, in active learning we are
interested in maximizing performance on the entire test
set. In our case we are interested in maximizing
performance on the next ten documents retrieved.

IR and RF have a long history. In the Rocchio (1971)
algorithm formulation we have a set of documents, each
document represented by a vector D_i, the elements of
which we will discuss later. The preliminary query
(not necessary returned by a Rocchio feedback
iteration) contains N total documents. If the
preliminary search realizes between one and nine
relevant documents (and the resultant number of non-
relevant documents), then N is 10. If there are no
relevant documents on the first screen than we search
subsequent screens until there is at least one relevant
document – in this case N is a multiple of ten. We will
ignore the case of ten relevant documents returned on
the preliminary search because then the preliminary
query is very good and one just goes to subsequent
screens to retrieve more relevant documents.

The feedback iteration using Rocchio after the initial
(non-Rocchio) search forms the following query:

$$Q_i = \alpha Q_{i-1} + \beta \sum_{j=1}^{R \text{ Relevant}} D_j - \gamma \sum_{j=1}^{N-R \text{ Non-Relevant}} D_j$$

where $j=1$ for the initial iteration, $Q_0 = 0$, R and $N-R$
are the number of relevant and non-relevant documents,
respectively, retrieved on the present iteration. We
defer the description of the elements of D to later
except to say here that D is normalized to unit length
and negative elements of Q set to zero (rationale for
this is in Rocchio (1971)). To implement the first
iteration we form the dot product of this first query
against all the documents ($Q_1 \cdot D_i$) where the
documents are those not yet marked as relevant and
non-relevant and then we rank the dot products from
high to low, present the ten largest marked as relevant
and non-relevant and then continue to the next iteration.
After the first relevancy iteration, we form subsequent iterations using the old value of Q and the relevant and non-relevant documents identified in the previous iteration.

We have a number of concerns with the Rocchio algorithm that we feel will make it problematic for use; mainly that it depends on three constants (α, β, γ). Most studies on the Rocchio algorithm vary the three constants to determine the optimum choice of these constants. However, we feel that is unfair – a separate validation set should have been used. Furthermore, even if one has a validation set, one does not have time to search for that optimum set of constants. Thus, we will use the following choices of α, β, γ as 8, 16, and 4 respectively, a choice that seemed to work well elsewhere (Buckley, Salton & Allan, 1994). Since all the negative elements of the resultant query are set to zero and since we are assuming that most of the documents returned in the next iteration will be non-relevant, there will be many elements of the query set to zero making for very poor performance on the next iteration.

The Ide regular algorithm (Salton & Buckley, 1990; Harman, 1992) is of the following format:

$$Q_j = Q_{j-1} + \sum_{\text{Relevant}} D_i - \sum_{\text{Non-Relevant}} D_i$$

where for the first feedback iteration, the Q on the right hand side is zero and as usual, all negative elements of the resultant query are set to zero.

The Ide dec-hi has basically the same form as Ide regular except the last summation has only one term, namely the highest ranked non-relevant document.

The fourth technique will be based on the use of support vector machines. SVM’s can best be understood in the context of Figure 1 where the black diamonds represent the relevant vectors D in high dimensional space and the empty diamonds represent the non-relevant documents.

When SVM’s are constructed, two sets of hyperplanes are formed (the solid lines), one hyperplane going through one or more examples of the non-relevant vectors and one hyperplane going through one or more examples of the relevant vectors. Vectors lying on the hyperplanes are termed support vectors and in fact define the two hyperplanes. If we define the margin as the orthogonal distance between the two hyperplanes, then a SVM maximizes this margin. Equivalently, the optimal hyperplane is such that the distance to the nearest vector is maximum. Details for solving this problem may be obtained elsewhere (Joachims, 1998; Vapnik, 1992, 1998). Here we use the vector Q^* instead of the traditional w for the optimal hyperplane. Q^* is such that the margin $\frac{2}{|Q^*|}$ is maximized by finding the α’s that maximizes:

$$W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (D_i \cdot D_j) y_i y_j$$

where $0 \leq \alpha_i \leq C, \quad y_i = \pm 1, \quad \sum_i y_i \alpha_i = 0$. Then

$$Q^* = \sum_{i=1}^{r} \alpha_i y D_i$$

and the sum is over the r support vectors ($\alpha_i \neq 0$).

The advantage of the linear representation is that Q^* can be calculated after training and classification amounts to computing the dot product of Q^* against every new document vector.

Linear SVM’s execution speeds are very fast and there is only one parameter to tune (C), which is a restriction on the largest value of α. Another advantage of SVM’s is that they are remarkably intolerant of the relative sizes of the number of training examples of the two classes. In most learning algorithms, if there are many more examples of one class than another, the algorithm will tend to correctly classify the class with the larger number of examples, thereby driving down the error rate. Since SVM’s minimize the error rate by attempting to separate patterns in high dimensional space, the result is that SVM’s are relatively insensitive to the number in each class.

In our model of RF, after construction of Q^* we calculate $Q^* \cdot D_i$ for all documents not seen so far and rank them from high to low (assuming the relevant documents are of class +1) and return the top ten to the user for marking. These values represent the proportional distances from the optimal separating hyperplane to the vectors of the documents not used so far in constructing the optimal hyperplane. These documents may be inside or outside the margin (since they were not used to generate the present support vectors). Those documents on the class +1 side of the optimal hyperplane and furthest from the optimal
in the document.

In the IR field, this term is called the term

where \(N \) is the total number of

is normalized to unit length.

If this word is absent,

and so we use the full set of features in our study.

we cannot waste time searching for the best set of f eatures

naïve Bayes and SVM. It is our contention that we

nearest neighbor, C4.5 and Rocchio), it does not for

features should be used (features are the elements of the

vectors). Although reducing the number of features
does improve performance on some algorithms (k-
nearest neighbor, C4.5 and Rocchio), it does not for

naïve Bayes and SVM. It is our contention that we
cannot waste time searching for the best set of features

and so we use the full set of features in our study.

Buckley, Salton, and Allen (1993) examined IR within

the context or a routing problem. They use the Rocchio

algorithm modified so that the last term in the equation

defining the new query includes not only the non-

relevant documents marked on the present screen but

assumes that all unseen documents are non-relevant and

included in the last term. The same three authors

(1994) also examined the use of locality information to

improve performance.

In all these discussions of relevance feedback, it is often

assumed that the preliminary query is of high quality.

We make no such assumptions here.

2. Term Weighting Issues

We discuss the issue of the term \(t_i \) in the document

vector \(\mathbf{D}_j \). In the IR field, this term is called the term

weighting while in the machine learning field, this term

is called the feature and in linear algebra it is the \(i \)th

element of the vector \(\mathbf{D}_j \). \(t_i \) states something about

word \(i \) in document \(\mathbf{D}_j \). If this word is absent, \(t_i \) is zero. If the word is present, then there are several

options. One option is that the term weight is a count

of the number of times this word occurs in this
document (called the term frequency (TF)). The next

option is that this term just indicates whether this word

is present or not (binary term weighting). In the original

Rocchio algorithm, each term TF is multiplied by a
term \(\log \left(\frac{N}{n_i} \right) \) where \(N \) is the total number of
documents in the collection and \(n_i \) is the number of
documents in which this term occurs. This last term is
called the inverse document frequency (IDF). Usually

\(\mathbf{D}_j \) is normalized to unit length.

A popular combination for feature \(i \) is the multiplication

of the TF by the IDF (TF-IDF). Salton and Buckley

(1988) discuss in detail various term weighting options.
Schapire, Singal, and Singer (1998) also look at
different term weighting options. However, using TF-
IDF requires two passes over the data because IDF
cannot be determined until all the words and the
number of articles in which that word is present is
calculated. A compensating fact is that these two
passes only have to be done once for any static
collection of documents. Although we will evaluate
algorithms using TF-IDF we would prefer not to use it
in practice. The question will be whether using TF-IDF
is much better than using just TF. Buckley, Salton, and
Allen (1994) use TF-IDF for the preliminary query but
not for the documents themselves since the
determination of IDF is quickly done for the small
numbers of queries as opposed to the large number of
documents.

hyperplane are the top ranked documents. Some of
these top-ten ranked documents may in fact be non-
relevant and in the next feedback iteration these newly
marked vectors (in addition to those marked in previous
feedback iterations) are used to construct a new set of
support vectors. We contrast this with active learning
(Schohn and Cohen, 1998; Tong and Keller, 2000)
where the emphasis will be to take vectors in the next
feedback iteration from within the margin. We don’t
want to do this in RF as many of the points within the
margin will be non-relevant and not useful to the user.
If the top-ten ranked documents are outside the margin
and are all relevant, then in the next feedback iteration
the support vectors will not change. If any of the top
ten documents are within the margin, the next set of
support vectors will be different from the present set.

Solving the previous set of equations is done using
SVM-light (see Acknowledgement section). There are
not many candidate vectors to consider as support
points. In general the number of potential support
points is ten times the iteration number.

1.3 Related Work on SVM’s, IR, and RF

Harman (1992) compares many models including
probabilistic models (as opposed to vector space
models) and is the only paper we could find that tracks
performance as a function of iteration. Schapire,
Singer, and Singhal (1998) investigate a modified
Rocchio and boosting as applied to text filtering.
Although their investigation was not in the RF domain,
they did show that a modified Rocchio algorithm could
do much better than the original Rocchio algorithm.
However, their algorithm requires multiple passes over
documents and is problematic for large text collections.

The article by Lewis, Schapire, Callan, & Papka (1996)
is in the area of text classification and compares
Rocchio with Woodrow-Huff and exponentiated
gradient. Joachims (1997) compared Rocchio and
naïve Bayes in text categorization while Salton and
Buckley (1990) examine Rocchio and probabilistic
feedback but only for one feedback iteration. They use
the residual collection method (as do we) in that
performance is measured on all those documents in the
collection not yet used in a feedback iteration.

Joachims (1998) looked at SVM’s in text categorization
and compared this to naïve Bayes, C4.5, k-nearest
neighbor, and Rocchio. Although not a RF study, it
discusses the issue of whether all or just some of the
features should be used (features are the elements of the
vectors). Although reducing the number of features
does improve performance on some algorithms (k-
nearest neighbor, C4.5 and Rocchio), it does not for
naïve Bayes and SVM. It is our contention that we
cannot waste time searching for the best set of features
and so we use the full set of features in our study.

Buckley, Salton, and Allen (1993) examined IR within
the context or a routing problem. They use the Rocchio
algorithm modified so that the last term in the equation
defining the new query includes not only the non-
relevant documents marked on the present screen but
assumes that all unseen documents are non-relevant and
included in the last term. The same three authors
(1994) also examined the use of locality information to
improve performance.

In all these discussions of relevance feedback, it is often
assumed that the preliminary query is of high quality.
We make no such assumptions here.

A popular combination for feature \(i \) is the multiplication

of the TF by the IDF (TF-IDF). Salton and Buckley

(1988) discuss in detail various term weighting options.
Schapire, Singal, and Singer (1998) also look at
different term weighting options. However, using TF-
IDF requires two passes over the data because IDF
cannot be determined until all the words and the
number of articles in which that word is present is
calculated. A compensating fact is that these two
passes only have to be done once for any static
collection of documents. Although we will evaluate
algorithms using TF-IDF we would prefer not to use it
in practice. The question will be whether using TF-IDF
is much better than using just TF. Buckley, Salton, and
Allen (1994) use TF-IDF for the preliminary query but
not for the documents themselves since the
determination of IDF is quickly done for the small
numbers of queries as opposed to the large number of
documents.
3. Stemming and Stop Lists.

Full stemming is the removal of suffixes of a word. For example, “builder”, “building”, and “builds” will all be reduced to their common root “build”. There could also be partial stemming such as changing plural forms to their singular. Stemming reduces the size of the document vectors. One performance issue will be the effect of stemming on retrieval accuracy. But there are other performance issues such as retrieval speed and size of the inverted index. Buckley, Salton and Allen (1993, page 68), discuss these options in detail.

Another technique to reduce the dimensionality is the removal of “stop” words, that is, a list of words that will not be used in constructing the document vector. The use of a stop list may or may not improve performance. Words like “a”, “an”, and “the” probably do not help in determining relevancy. If the stop list consists of an a priori list of words, then only one pass over the documents is needed. However, if the stop list is based on the proportion of documents that have certain words, then two passes are required over the documents – once to count the number of all words and the second pass to eliminate either very common words or very rare words. One version of this is to remove words that do not occur in at least three documents (Drucker, 1999). This eliminates rare or misspelled words.

We tried the following combinations of pre-processing techniques and algorithms (1) Stemming using the Porter (1980) stemmer or not. (2) TF, TF-IDF, or binary features (3) Four algorithms: Rocchio, Ide regular, Ide deci-hi and SVM’s. Number 1 can be done “on the fly” but TF-IDF of number 2 requires two passes over the document. In all cases, all one or two letter words were eliminated, words reduced to lower case, and the words “and” and “the” were eliminated.

We did not try all combinations of features because previous studies (Drucker, 1999) had shown that TF-IDF is not necessary for SVM’s. Salton and Buckley (1988) showed that using binary features gives the worst performance in comparison to TF or TF-IDF. Recall that we would prefer not to use TF-IDF because it requires two passes to calculate IDF.

There are too many ways to assess the effectiveness of the feedback process to discuss here in detail. References are Lewis (1995), Tauge-Sutcliffe (1992), Saracevic (1975), Mizzaro (1997), and Korfhage (1997). However, traditionally recall and precision are used. Let R be the number of relevant documents in the collection, \(n_{\text{Rel}} \) be the number of relevant documents actually retrieved in a feedback iteration and \(N \) be the total number of documents returned in the feedback iteration (typically, \(N \) is 10). Precision (p) and recall(r) are then defined as:

\[
p = \frac{n_{\text{Rel}}}{N} \quad r = \frac{n_{\text{Rel}}}{R}
\]

Although we assume \(N \) is ten if one through nine relevant documents are returned on the initial preliminary search, if we did change \(N \), both the recall and precision will change (because \(n_{\text{Rel}} \) does) and at some point both the recall and precision will be approximately equal and this is termed the recall-precision break-even point and is a popular measure of performance. Schapire, Singer, and Singhal (1998) give very reasonable arguments why conventional metrics such as the precision-recall break-even point are not very informative to the user. In particular, we concur with their contention that since recall cannot be calculated by the user until all relevant documents are seen by the user (if this is even possible except in an exhaustive search), the user cannot know (in terms of recall) how well the IR search is going.

For these reasons, we will emphasize the coverage ratio as the performance metric. Coverage ratio is a cumulative metric and is the ratio of the cumulative total number of relevant documents retrieved so far to the cumulative number of documents that would have been retrieved in an ideal search. The coverage ratio is ideally unity at each iteration.

To take account of the fact that at some point an ideal RF system will run out of relevant documents to retrieve, we define the coverage ratio as:

\[
\text{coverage ratio} = \begin{cases}
\frac{\sum_{i=1}^{10} n_R}{10} & \text{when } 10i \leq R \\
\frac{\sum_{i=1}^{R} n_R}{R} & \text{otherwise}
\end{cases}
\]

where \(R \) is the total number of relevant documents in the entire collection and \(n_{R_R} \) is the number of relevant documents returned at iteration \(i \). The user can only calculate the top ratio because the user has no way of knowing if a decreasing coverage ratio is due to poor performance of the algorithm or if the system is running out of relevant documents. Basically the user probably does not care – to the user, a declining precision and coverage ratio means that no more relevant topics are being retrieved. Precision and coverage ratio are a measure of user satisfaction because the user would like to see all relevant documents returned per feedback iteration (precision) and cumulatively (coverage ratio). We do not report precision here because of space...
limitations and the fact that coverage is smoother than precision. However, coverage is also average precision until the ideal search would run out of relevant documents to find and thus indicates the average number of relevant documents returned per screen.

5. A Test Set.
A set of documents labeled by topic can be used to simulate the relevance feedback environment. For a test set we use the Reuters corpus of news articles (www.reseach.att.com/~lewis). The Reuters database is a collection of documents that may be assigned a single topic, multiple topics, or no topic. Eliminating articles with no topics leaves us with 11,367 articles.

Words that are two or less letters in length and the words “and” and “the” have been eliminated. Some articles have multiple topics associated with them so some articles may be relevant for different topics. There are a total of 14,302 topics assigned to the 11,367 articles. After processing there are 27,478 unique words using the Porter (1980) stemmer and 31,478 unique words without stemming.

We define the visibility of a topic as the percent of total documents that have that topic. We will track both coverage ratio as a function of iteration parameterized in the following way: (1) visibility of the topic and (2) the number of documents returned in the preliminary search. The number of returned documents in the preliminary search will be restricted to one or three. Later, we will discuss the issue of no returned documents in the preliminary search. Although we decline to report averages because we believe averages conceal the poor performance of algorithms on low-visibility documents, we do not have the space to report the metrics for all topics (nor would that be especially illuminating) and therefore we report the metrics for selected topics (Table 1). In other words, we will first assume that topic number one is the relevant topic and all others are non-relevant. Then we will assume topic number five is the most relevant document and all others non-relevant, etc.

Examining Table 1, since all “corn” and “soybean” topics are also “grain” topics, all soybean and corn articles will have at least two topics. Thus, when we consider “corn” as the relevant topic, we consider all “grain” articles that are also “corn” articles as relevant while “grain” articles that are not “corn” articles are non-relevant.

Metrics that will be reported are the results of averaging ten experiments with the same initial number of preliminary documents and the same visibility. Each of the ten experiments starts with a different random seed so that the initial set of preliminary documents (picked at random) is different.

Table 1. Some of the topics in the database:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Topic name</th>
<th>Number</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>earn</td>
<td>3987</td>
<td>33%</td>
</tr>
<tr>
<td>5</td>
<td>grain</td>
<td>628</td>
<td>5.5%</td>
</tr>
<tr>
<td>10</td>
<td>corn</td>
<td>254</td>
<td>2.2%</td>
</tr>
<tr>
<td>15</td>
<td>gnp</td>
<td>120</td>
<td>1.4%</td>
</tr>
<tr>
<td>20</td>
<td>soybean</td>
<td>78</td>
<td>.68%</td>
</tr>
<tr>
<td>30</td>
<td>iron-steel</td>
<td>67</td>
<td>.58%</td>
</tr>
<tr>
<td>40</td>
<td>palm oil</td>
<td>43</td>
<td>.37%</td>
</tr>
<tr>
<td>50</td>
<td>fuel</td>
<td>28</td>
<td>.24%</td>
</tr>
<tr>
<td>60</td>
<td>lei</td>
<td>17</td>
<td>.15%</td>
</tr>
<tr>
<td>70</td>
<td>rapeoil</td>
<td>8</td>
<td>.07%</td>
</tr>
</tbody>
</table>

6. Experimental Results.
In Figure 2, we assume one document retrieved on the initial search for two cases: one case where the topic has a high visibility (33%) and the other case with low visibility (1.4%). For each case, we show the results of two algorithms: SVM using binary features and Rocchio using TF-IDF.

![Figure 2. Coverage ratio versus number of iterations for two different visibilities. The dashed line is for Rocchio using TF-IDF features. One document retrieved in preliminary search.](image)

Let us discuss the high visibility case first. Since they have almost identical performance, we have used one label to identify the top two graphs. Recall that precision is identical to the coverage ratio in the first feedback iteration. Both algorithms do very well on the first iteration returning on the average approximately 9.5 relevant documents on a screen of ten documents. At the final iteration, the coverage ratio is approximately 95% indicating that by the tenth iteration an ideal case would return one hundred documents and both these algorithms return cumulatively about 95 documents by the tenth iteration. Therefore both these algorithms do equally well.

Now let us examine the case where the visibility is low.
At the first iteration the precision is about 50% indicating, that on the average, five of ten relevant documents would be returned for both these algorithms when one has only one relevant document returned on the preliminary search. However, by the results of the tenth iteration, SVM will have returned approximately eighty-five of the hundred that possibly could be returned in the ideal case while Rocchio will have returned only thirty of hundred relevant documents.

Table 2. Coverage ratio at the tenth iteration using stemmed data. One relevant and nine non-relevant documents assumed returned at the initial search.

<table>
<thead>
<tr>
<th>Visibility</th>
<th>SVM binary</th>
<th>SVM TF</th>
<th>Ide hi TF-IDF</th>
<th>Ide hi TF</th>
<th>Rocchio TF-IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>99%</td>
<td>100%</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>5.5%</td>
<td>86%</td>
<td>87%</td>
<td>57%</td>
<td>44%</td>
<td>51%</td>
</tr>
<tr>
<td>2.2%</td>
<td>75%</td>
<td>74%</td>
<td>37%</td>
<td>27%</td>
<td>29%</td>
</tr>
<tr>
<td>1.4%</td>
<td>85%</td>
<td>85%</td>
<td>34%</td>
<td>32%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 3. Coverage ratio at the tenth iteration using non-stemmed data. One relevant and nine non-relevant documents assumed returned at the initial search.

<table>
<thead>
<tr>
<th>Visibility</th>
<th>SVM binary</th>
<th>SVM TF</th>
<th>Ide hi TF-IDF</th>
<th>Ide hi TF</th>
<th>Rocchio TF-IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
<td>99%</td>
<td>100%</td>
<td>95%</td>
<td>95%</td>
<td>96%</td>
</tr>
<tr>
<td>5.5%</td>
<td>88%</td>
<td>88%</td>
<td>57%</td>
<td>45%</td>
<td>50%</td>
</tr>
<tr>
<td>2.2%</td>
<td>74%</td>
<td>75%</td>
<td>38%</td>
<td>28%</td>
<td>29%</td>
</tr>
<tr>
<td>1.4%</td>
<td>83%</td>
<td>86%</td>
<td>36%</td>
<td>33%</td>
<td>33%</td>
</tr>
</tbody>
</table>

Examining these two tables, we see that SVM’s using either binary or TF features give almost identical performance. Ide dec-hi (with TF-IDF) does slightly better (and statistically so) that the other two Rocchio-type algorithms except for the high visibility case. Based on these tables, SVM is much better. Since there is no difference in SVM’s whether one uses binary or TF features, one might as well use binary features as they are easier to obtain and use stemming as this reduces the vocabulary size.

We do not have space to present the tables for three relevant documents returned on the preliminary search but we reach the same conclusions—SVM’s are superior and one might as well use binary and stemmed data. The fact that there are three documents returned in the initial search rather than one gives slightly better performance results except for the highest visibility case.

The procedures discussed up to now assumed that there was at least one relevant document returned on the first screen. This is problematic in the case of the low visibility topics. In those cases, one has to go to subsequent screens to find a relevant document. How many screens one has to search will depend on the sophistication of the preliminary query. Our assumption is that one has to examine a number of documents equal to the inverse of the visibility to find one relevant document. In Table 4, we show the coverage ratio after twenty feedback iterations for documents with low visibility. By that time (Table 1), one should have retrieved all documents. The non-SVM algorithms are not shown because they are so poor—approximately zero at the end of twenty iterations.

Table 4. Coverage ratio after twenty feedback iterations using stemmed data. The inverse of the visibility documents are retrieved before one obtains one relevant document.

<table>
<thead>
<tr>
<th>Visibility</th>
<th>SVM binary</th>
<th>SVM TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4%</td>
<td>86%</td>
<td>86%</td>
</tr>
<tr>
<td>.68%</td>
<td>72%</td>
<td>71%</td>
</tr>
<tr>
<td>.58%</td>
<td>85%</td>
<td>84%</td>
</tr>
<tr>
<td>.37%</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>.24%</td>
<td>41%</td>
<td>40%</td>
</tr>
<tr>
<td>.15%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>.07%</td>
<td>100%</td>
<td>94%</td>
</tr>
</tbody>
</table>

The excellent performance can be partially attributed to the facts that the negative examples (of which there are many) may be well separated from the few positive examples. The number of non-relevant documents in the preliminary search is inversely related to the visibility.

7. Conclusions

We have analyzed the performance of SVM-based algorithms and compared them to Rocchio, Ide regular, and Ide dec-hi when the preliminary query gives very few relevant documents. Ide regular performs so poorly that its results are not even reported. When the number of relevant documents in the database is relatively high, all of the algorithms perform well. However, when the
visibility is low, SVM using binary features is much better. Obtaining binary features is much simpler than that of obtaining TF features and only requires one pass over the data rather than the two passes required for TF-IDF features. In our experiments we picked a random set of preliminary documents. This has the advantage of allowing us to average over multiple experiments but could be considered to be artificial in that a more realistic front-end would deliver a first set of preliminary documents that are “closer” in some sense. We intend to investigate this case in the future.

Acknowledgements

Thanks go to Vladimir Vapnik for his insights and Thorsten Joachims who supplied the code for the support vector machine optimization problem.

References

